Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(4): 103503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330888

RESUMO

The thermal stress caused by global climate change adversely affects the welfare, productivity, and reproductive performance of farm animals, including chickens, and causes substantial economic losses. However, the understanding of the genetic basis of the indigenous chicken adaptation to high ambient temperatures is limited. Hence, to reveal the genetic basis of thermal stress adaptation in chickens, this study investigated polymorphisms in the heat shock protein 70 (HSP70) and HSP90 genes, known mechanisms of cellular defense against thermal stress in indigenous and local chicken breeds and red junglefowls in Thailand. The result revealed seven alleles of the HSP70 gene. One allele exhibited a missense mutation, where an amino acid changed from Asn to His in the substrate-binding and peptide-binding domains, which is exclusive to the Lao Pa Koi chicken breed. Twenty new alleles with silent mutations in the HSP90 gene highlighted its greater complexity. Despite this diversity, distinct population structures were not found for either HSP70 or HSP90, which suggests incomplete impact on the domestication process and selection. The low genetic diversity, shown by the sharing of alleles between red junglefowls and Thai indigenous and local chicken breeds, aligns with the hypothesis that these alleles have undergone selection in tropical regions, such as Thailand. Selection signature analysis suggests the purifying selection of HSP70 for thermotolerance. This study provides valuable insights for enhancing the conservation of genetic resources with thermotolerant traits, which are essential for developing breeding programs to increase poultry production in the context of global climate change.


Assuntos
Galinhas , Proteínas de Choque Térmico HSP70 , Animais , Galinhas/genética , Proteínas de Choque Térmico HSP70/genética , Variação Genética , Tailândia , Polimorfismo Genético , Proteínas de Choque Térmico HSP90/genética
2.
PLoS One ; 18(10): e0289983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37792798

RESUMO

Lao Pa Koi (LPK) chicken is a popular fighting breed in Thailand, prized for (its unique characteristics acquired by selective breeding), and a valuable model for exploring the genetic diversity and admixture of red junglefowls and domestic chickens. In this study, genetic structure and diversity of LPK chicken were assessed using 28 microsatellite markers and mitochondrial DNA (mtDNA) D-loop sequences, and the findings were compared to a gene pool library from "The Siam Chicken Bioresource Project". High genetic variability was observed in LPK chickens using mtDNA D-loop haplotype analysis, and six haplotypes were identified. Microsatellite data revealed 182 alleles, with an average of 6.5 alleles per locus. These results confirmed the occurrence of genetic admixture of red junglefowl and Thai domestic chickens in LPK chicken breed. A maximum entropy modeling approach was used to analyze the spatial suitability and to assess the adaptive evolution of LPK chickens in diverse local environments. The model identified 82.52% of the area studied as unsuitable, and 9.34%, 7.11%, and 2.02% of the area indicated moderate, low, and high suitability, respectively. The highest contribution rate to land suitability for LPK chickens was found at an elevation of 100-250 m, suggesting the importance of elevation for their potential distribution. The results of this study provide valuable insights into the genetic origin of LPK chicken breed and identify resources for future genetic improvement.


Assuntos
Galinhas , Variação Genética , Animais , Galinhas/genética , DNA Mitocondrial/genética , Haplótipos , Filogenia , Tailândia
3.
Animals (Basel) ; 13(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37370459

RESUMO

Understanding the genetic diversity of domestic chicken breeds under the impact of socio-cultural and ecological dynamics is vital for the conservation of natural resources. Mae Hong Son chicken is a local breed of North Thai domestic chicken widely distributed in Mae Hong Son Province, Thailand; however, its genetic characterization, origin, and diversity remain poorly understood. Here, we studied the socio-cultural, environmental, and genetic aspects of the Mae Hong Son chicken breed and investigated its diversity and allelic gene pool. We genotyped 28 microsatellite markers and analyzed mitochondrial D-loop sequencing data to evaluate genetic diversity and assessed spatial habitat suitability using maximum entropy modeling. Sequence diversity analysis revealed a total of 188 genotyped alleles, with overall nucleotide diversity of 0.014 ± 0.007, indicating that the Mae Hong Son chicken population is genetically highly diverse, with 35 (M1-M35) haplotypes clustered into haplogroups A, B, E, and F, mostly in the North ecotype. Allelic gene pool patterns showed a unique DNA fingerprint of the Mae Hong Son chicken, as compared to other breeds and red junglefowl. A genetic introgression of some parts of the gene pool of red junglefowl and other indigenous breeds was identified in the Mae Hong Son chicken, supporting the hypothesis of the origin of the Mae Hong Son chicken. During domestication in the past 200-300 years after the crossing of indigenous chickens and red junglefowl, the Mae Hong Son chicken has adapted to the highland environment and played a significant socio-cultural role in the Northern Thai community. The unique genetic fingerprint of the Mae Hong Son chicken, retaining a high level of genetic variability that includes a dynamic demographic and domestication history, as well as a range of ecological factors, might reshape the adaptation of this breed under selective pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...